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Abstract-The hybrid method involving the combined use of the Laplace transform method and the finite 
element method is considerably powerful for solving one-dimensional linear heat conduction problems. In 
the present method, the time-dependent terms are removed from the problem using the Laplace transform 
method and then the finite element method is applied to the space domain. The transformed temperature 
is inverted numerically to obtain the result in the physical quantity. The estimation of the surface heat 
flux or temperature from transient measured temperatures inside the solid agrees well with the analytical 
solution of the direct problem without Beck’s sensitivity analysis and a least square criterion. Due to no 
time step, the present method can directly calculate the surface conditions of an inverse problem without 
step by step computation in the time domain until the specific time is reached. In addition, it is also not 
necessary to compute all the nodal temperatures at each time step when the present method is applied to 
an inverse problem. It is worth mentioning that a little effect of the measurement location on the estimates 
is shown in the present method. Thus, it can be concluded that the present method is straightforward and 

efficient for such problems. 

INTRODUCTION 

IN RECENT years the analysis of inverse heat con- 
duction problems has numerous applications in vari- 
ous branches of science and engineering, such as the 
prediction of the inner wall temperature of a reactor 
and the determination of the heat transfer coefficient 
and the outer surface conditions in the reentry of a 
space vehicle. The difficulty in the analysis of inverse 
problems is due to the diffusive nature of heat flow. 
For this reason, slight inaccuracies in the measured 
interior temperatures will be magnified at the surface 
and may not be able to predict the surface conditions 
with the desired accuracy. 

Various methods have been presented for the analy- 
sis of such problems. An exact solution of the linear 
inverse problem in conduction has been presented by 
Burggraf [l] under the condition of the instantaneous 
temperature for the given continuous temperature and 
heat flux histories at a given internal point. However, 
the results obtained by his method are also approxi- 
mate for discrete or experimental data. Sparrow et 
al. [Z] and Woo and Chow [3] applied the Laplace 
transform method to the present problem. Their solu- 
tions are valid only for small vaIues of time (for large 
values of s), thus the application of their method is 
limited. The application of the finite element method 
to the inverse heat conduction problem has been 
investigated by Krutz et al. [4] and Busby and Trujillo 
[5]. The boundary element method in conjunction 
with Beck’s sensitivity analysis has been presented for 
the solution of two-dimensional linear inverse heat 
conduction problems by Zabaras and Liu [6]. The 
finite difference analyses of the inverse problem have 

been introduced by a number of authors [7-91. Mol- 
lification methods have been used by Murio [IO, 111 
to smooth the predictions at the surface. Recently, 
the method of regularizers was used to analyse some 
inverse problems [12-141. Beck (15-171 used a least 
squares method to stabilize the inverse heat con- 
duction problem. In all of the above methods, the 
complicated computational procedures are generally 
required in order to obtain a more accurate solution. 
For this reason, the present study presents a simple 
and efficient method which can obtain a stable and 
accurate solution without step by step computation 
in the time domain. 

The present study is still limited to a one-dimen- 
sional planar geometry with constant thermal prop- 
erties. The combined application of the Laplace trans- 
form method and the finite element method is applied 
to estimate surface conditions from data available at 
any location in a planar solid. This hybrid method 
has proved to be very powerful for solving linear 
transient heat conduction problems [ 18, 191. This 
method is applied to analyse the present problem, 
some different test examples are illustrated. In these 
examples, a composite material is also included. It 
is found that the present method can improve the 
drawbacks of previous works such as the involved 
computation. The present technique may be applied 
to an inverse problem with temperature-dependent 
thermal conductivity. This will be studied in a future 
paper. 

ANALYSIS 

As shown in Fig. I, one-dimensional linear heat 
conduction problems are selected as a basis for the 
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NOMENCLATURE 

element gradient matrix 
specific heat of the material 
total number of elements 
global force vector 
thermal conductivity of material 
global conduction matrix 
distance between two nodes 
numbered node of the measurement 
location 
total number of nodes 
element shape function matrix 
sensor distance from heated surface 
heat generation inside the material 
surface heat flux 
Laplace transform parameter, c + iw 

t dimensionless time 
c, bL’ free parameters 
X coordinate. 

Greek symbols 
r thermal diffusivity of material 

a2! ratio of thermal diffusivity, 

kzp,c,Ik,P,c2 
7 ratio of thermal conductivity. k,/k, 

0 dimensionless temperature 
0 transformed dimensionless temperature 
{8} global transformed temperature vector 

e;, transformed dimensionless measured 
temperature 

P density of material. 

application of the present method. The boundary at 
x = 0 is given as a uniform temperature or an insu- 
lated surface. The measured temperature at the 
location .Y = N is assumed to be known as the function 
of time. It is desired to predict the heat flux and the 
temperature variation at x = I. The dimensionless 
form for such problems may be expressed as 

20 
- 

g+Q=$ inO,<.v< I,t>O (la) 

ZO(O, I) 
- = 0 

a.r 
or@O, I) = 0 

O(‘V, t) = F(f) (14 

q(l,r) =$ estimated (Id) 
c.v .V’ I 

0(x,0) = 0 (W 

where Q is the volume heat source and O(N, I) the 
measured temperature at the location x = N. The 
unknown surface heat flux q(1, r) and surface tem- 
perature O(1, I) are to be estimated. In the present 
method, q( I, 1,) at the specific time t = I, is guessed 
with Newton’s iteration technique until the measured 
temperature O(N, t.) is satisfied. Note that the surface 
heat flux q(1, I) and the surface temperature 0(1, t) 
are simultaneously determined without the need for 
Reck’s sensitivity analysis and a least square criterion. 

To remove the time-dependent terms from the 
differential equation and boundary conditions, the 

method of the Laplace transform will be employed. 
Taking the Laplace transform of equations (I) gives 

subject to the transformed boundary conditions 

d&O) 
---0 or&(O) =0 

dx 

&N, s) = F(s) 

_ d# 

q=dx..,,’ 

When a function 4(t) is given, its Laplace transform 
is defined as follows : 

4(s) = 
5 

L 
4(t) e-.” dt. (3) 

0 

The solution ofequations (2) can be obtained by the 
Galerkin weighted residual process. The functional 
formulation that is equivalent to equation (2a) and 
its boundary conditions, equations (2b)-(2d), can be 
written as 

(4) 

Equation (4) can be written as the summation of 
individual elements. Assume that the temperature dis- 
tribution in every individual element is linear [20]. 
Thus, the following elemental matrices can be given 
as 
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[B’]= zf$. 
[ .I 

64 

Equation (4) can be rewritten for each element as 

- p- ;s{@}‘[N’]~ 
> 
[N’]{t?) dx 

-BWl@%x= I. (6) 

The functional I can be expressed as 

where E denotes the total number of elements. The 
first derivative of the functional I with respect to (8) 
must be equal to zero in order to minimize it, i.e. 

(8) 

The rearrangement of equation (8) gives the following 
vector-matrix equation [18, 191 

w1m = 0-f (9) 

where [K] is an (n x n) band matrix with a complex 
number, {a} is an (n x I) vector representing the 
unknown temperatures and {f} is an (n x 1) vector 
representing the forcing terms. 

It can obviously be found from equation (9) that 
the double direct Gaussian elimination algorithm and 
the numerical inversion of Laplace transforms [21- 
23] are applied to equation (9), then the solution 
located at a specific node in the given domain will be 
obtained. Under the circumstances, the location of the 
measured temperature can be considered as a specific 
node. It shows that if the guessed heat flux at x = 1 
is substituted into equation (9) the calculated tem- 
perature at x = N will be determined without com- 
puting all the nodal temperatures at each time step. 
Note that the estimation of the surface heat flux (or 
temperature) at a specific time is found without step 
by step computation in the time domain until the 
specific time is reached. Obviously, the numerical pro- 
cedures of the present method are very different from 
those of previous works [4-17] which must compute 
all the nodal temperatures at each time step with step 
by step computation in the time domain. For this 
reason, the present hybrid method seems to be more 
efficient for such problems. The guessed heat flux at 
x = 1 can be determined by using Newton’s iteration 
method when the relative error between the calculated 
temperature and the measured temperature at x = N 
is less than a small number such as 0.0001. The ex- 
pression of the double direct Gaussian elimination 
algorithm can be given as 

where 8, = q,,,. 

NUMERICAL EXAMPLES 

To test the effectiveness of the present method some 
different cases are illustrated. 

Example 1 (one heat point-source) 
This example involves one heat point-source Q = 1 

at the central position of a thick undeformable slab. 
Its initial temperature is equal to zero and the tem- 
peratures at the two ends of this slab are kept constant. 
Thus, the response of this system can be expressed as 

.3 

O<xSl; g +6(x-0.5) 7 2 (11) 

subject to the conditions 

e(o,t) = e(l,t) = 0 (12a) 

qx, 0) = 0. WW 

The exact solution to equations (11) and (I 2) is given 
as 

PiI 
0(x, 1) = 2 f J$- sin 

m-l m 0 
$ sin &x) (13) 

where /?,,, = mrr, m = 1,2,3,. . . 
Assume that the boundary condition at x = 1 must 

be estimated, but the temperature at x = N is 
measured. It implies that 8(N, r) is given as 

IQ 
O(N, t) = 2 f !-$&sin $ 

0 
sin (B,n3. (14) 

m-, m 

Under the circumstances, the system belongs to an 
inverse problem. 

The Laplace transform of equation (11) with 
respect to time is 

d28 I 
-Q + ~6(x-o.s) = St7 

The resulting system of algebraic equations is given 
in the following matrix form when the finite element 
method is applied to Example 1 
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Table I. Solutions for various measurement locations and nodes when I = 0.6 

.x 

n=9 n= 17 

M-2 M=7 M=2 M= IS Exact 

0.125 0.0623 I 0.06041 
0.250 0.12501 0.121 I9 
0.375 0.18850 0.18269 
0.500 0.25312 0.24524 
0.625 0.19418 0.18413 
0.750 0.13695 0.12459 
0.875 0.08159 0.06680 
1.000 0.02824 0.01086 

0.06237 0.05983 0.06230 
0.12514 0.12001 0.12461 
0.18870 0.18091 0.18701 
0.25338 0.24283 0.24878 
0.19454 0.18106 0.18701 
0.13738 0.12082 0. I2461 
0.082 I2 0.06229 0.06230 
0.02887 0.00557 0.00000 

Heat flux at I = I 
-0.41863 - 0.43994 -0.41779 -0.44636 -0.49813 

n, total number of nodes; M, numbered node of the measurement location. 
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B A B 
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Example 2 (heatj’ux and insulation at two ends) 
Consider a thick undeformable slab which is 

required to be heated by a surface heat flux q(f) at 
x = 1. The surface at x = 0 is assumed to be insulated. 
Similarly, assume that its initial temperature is also 
zero. Using the ‘data’ generated in this manner, 
the surface heat flux q(r) is reconstructed using the 
inverse technique. The response of this system is 
governed by 

(16) 

80 se --- 
dX2 - Zt’ 

o,<x< I 

with the conditions 

g (0, t) = 0 

;(,A =q(r) = I 

(17) 

(18b) 

where A = 2(l/l+sl/3) and B = - l/lfsl/6. 
The surface heat flux (or temperature) is deter- 0(X, 0) = 0. (18c) 

mined by using the hybrid method. Their calculated 
solutions are shown in Tables 1 and 2. The exact solution of Example 2 is given as [24] 

Table 2. Comparison of estimates with the exact solution at I = I and 5 when 
n=9andM=7 

.Y 

r-l 1=5 

Estimate Exact Estimate Exact 

0.125 0.06186 
0.250 0.12383 
0.375 0.18603 
0.500 0.24856 
0.625 0.18652 
0.750 0. I2496 
0.875 0.06396 
1.000 0.00354 

Heat flux at x = I 
-0.48099 

0.06250 0.06248 0.06250 
0.12499 0.12496 0.12499 
0.18750 0.18745 0.18751 
0.2493 I 0.24993 0.24932 
0.18750 0.18741 0.18751 
0.12499 0.12490 0.12499 
0.06250 0.06238 0.06250 
O.OOOOO -0.00014 O.OOOOO 

-0.49981 -0.50014 -0.49984 
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Table 3. Solutions for various measurement locations and nodes when I = 0.6 

n=9 n= 17 

x M=2 M=7 

Ei 
0:250 
0.375 
0.500 
0.625 
0.750 
0.875 
I.000 

0.43378 0.43322 0.43387 0.43370 0.43388 
0.44157 0.44101 0.44166 0.44146 0.44165 
0.46496 0.46437 0.46498 0.46479 0.46497 
0.50398 0.50332 0.50390 0.5037 I 0.50385 
0.55862 0.55790 0.55842 0.55821 0.55833 
0.62894 0.62813 0.62857 0.62834 0.62844 
0.71496 0.71404 0.71441 0.71416 0.71420 
0.81669 0.81565 0.8 I592 0.81563 0.81564 
0.93419 0.93299 0.93315 0.93282 0.93279 

M=2 M= I5 Exact 

Heat flux at x = I 
I .00286 1.00157 I BOO74 I .00036 l.OOOOO 

Table 4. Comparison of estimates with the exact solution at r = I and 5 when 
n=9andM=2 

x 

I=1 t=5 

Estimate Exact Estimate Exact 

O(x,t) = t+ 
3X2-1 - -2 f (_,y!f!d$!3e-Bi~ 6 

III-I m 

(19) 

where ~3” = mn, m = 1,2,3,. . . 
To attempt to predict the surface conditions at 

x = 1 the temperature variation at the measurement 
location .r = N must be known such as Example 1. 
The present hybrid method is still applied to this test 
case. The calculated solutions are shown in Tables 3 
and 4. 

The calculated temperature distributions at various 
measurement locations for various nodes are listed in 
Tables 1 and 3, respectively. It is found from these 
two tables that the solutions of the 17 modelling nodes 
are in good agreement with those of the 9 modelling 
nodes. It implies that the present solutions are con- 
vergent. Tables 1 and 3 also show good agreement 
between the present solutions and the exact values 
even though the 9 modelling nodes are selected. Thus 
this modelling is used to evaluate the results under 
other conditions. It can be seen from Tables 1 and 3 
that the changes of the measurement location have a 
little effect on the numerical solutions. Tables 2 and 4 
show a comparison of the present solutions with the 
exact solutions when t = 1 and 5. Similarly, the good 

agreements are also observed in this comparison when 
the 9 modelling nodes are required. It is worth noting 
that the present solutions also agree well with the 
analytical solutions for the long-time cases. It can be 
concluded from these above facts that the present 
method is a powerful numerical technique for inverse 
heat conduction problems under more general con- 
ditions. 

Example 3 (composite materials with two layers) 
A composite slab of two layers with the assump- 

tions of constant thermal properties and neglect of 
contact resistance is analysed. The dimensionless 
equations for the composite slab of two layers may be 
expressed as 

0 G x < 0.5 ; 
a24 w 
a.9 -dr (204 

a2e2 de2 
O.S<xg 1; a,,p=x. VW 

The boundary and initial conditions are given as 
follows : 

0.000 0.83329 0.83334 4.83324 4.83333 
0.125 0.841 I3 0.841 I6 4.84131 4.84115 
0.250 0.86459 0.86459 4.86459 4.86458 
0.375 0.9037 I 0.90365 4.90375 4.90365 
0.500 0.95847 0.95833 4.95845 4.95833 
0.625 1.02889 1.02864 5.02893 5.02865 
0.750 1.11496 I.11458 5.11481 5.11458 
0.875 1.21667 I.21614 5.21646 5.21615 
I .ooo 1.33401 1.33332 5.33344 5.33333 

Heat flux at x = 1 
1.00151 l.OOOOO 1 .a0028 l.OOOOO 
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t>o,x=o; 
80, a0 

- - = q(t) = Jcos lOtI ax (‘la) 

ae, X=O.S; z;=y$, 8, =er (21b) 

x-1; f&) (214 

t=o,oeG I; e,(x,o)=e2(X,o) (21d) 

where 

j, = k,/k,(p,c, = p2c2 = 1, k, = 1, k2 = 0.5). 

Few papers have been published on heat transfer in 
the inverse problem of composite slabs [25]. Indeed, 
analytical results of heat transfer in such problems are 
often useful for many practical designs. Example 3 is 
applied to test the efficiency of the present method for 
the inverse heat conduction problem in the composite 
slab of two layers. In this test case the heat flux and 
temperature are assumed unknown at the location 
x = 1. Similarly, it is necessary to know the tem- 
perature variation at the measurement location 
x = N. The final vector-matrix equation to equations 
(20) and (21) using the Laplace transform method 
and the finite element method is given as 

- 

. . . 

4 A,+Az B2 

B2 2-42 B2 

. . . 
. . . 

. . . 
Bz .A, 

4 
$2 

4w 

0 

B, . 

= 0 il 0 (22) 

_ B. _ 
0 

where ‘i’ and ‘M’ are numbered as the position of 
the interface and the location of the measurement, 
respectively. The values of A ,, B,, A2 and B2 are given 
as 

1 sl 1 sl 
A, =i+Tp B, = -i+7;, 

Similar numerical procedures, as shown in Example 
1, are used to analyse equation (22). The unknown 

Table 5. Solutions for various measurement locations at 
r=O.ll wheni=9andn=17 

Inverse problem 
Direct 

X M=2 M= I2 problem 

X:Z 
0.26406 0.26176 0.26432 
0.23509 0.23385 0.23508 

0.1250 0.20584 0.20506 0.20527 
0.1875 0.17720 0.17617 0.17637 
0.2500 0.15024 0.14917 0.14945 
0.3125 0.12588 0.12486 0.12526 
0.3750 0.10468 0.10367 0.10422 
0.4375 0.08689 0.08589 0.08655 
0.5000 0.07254 0.07154 0.07226 
0.5625 0.05035 0.05005 0.05017 
0.6250 0.03388 0.03318 0.03376 
0.6875 0.02210 0.02203 0.02203 
0.7500 0.01401 0.01336 0.01397 
0.8150 0.00871 0.00861 0.00868 
0.8750 0.00544 0.00543 0.00543 
0.9375 0.00370 0.00368 0.00369 
1.0000 0.00315 0.00313 0.003 14 

Heat flux at .r = 0 
0.4585 1 0.43799 0.45360 

surface heat flux q(t) at a specific time is guessed and 
then checked whether the calculated temperature at 
the location x = Nmatches the measured temperature 
using Newton’s iteration technique. The numerical 
results are shown in Tables 5 and 6. 

Table 5 shows solutions for the two different 
locations at t = 0.11 when i = 9 and n = 17. It is seen 
from Table 5 that no remarkable differences are 
observed in the comparisons for the two different 
measurement locations. It can be similarly concluded 
that the effect of the measurement location on the 
estimates is negligible. In addition, Tables 5 and 6 also 
show a fairly good agreement between the numerical 
solutions of the direct problem and the estimates. 

CONCLUSIONS 

An accurate and stable method of analysis is 
developed for solving one-dimensional linear inverse 
heat conduction problems including the composite 
slab of two layers. Due to no time step, the present 
method can directly predict the surface heat flux (or 
temperature) at a specific time from the transient mea- 
sured temperature inside solids without step by step 
computation in the time domain until the specific time 
is reached. In other words, the solution to an inverse 
problem can be uniquely determined when the data 
at the interior location are known at a specific time. 
It is not necessary to compute all nodal temperatures 
at each time step when the present method is applied 
to the inverse problems. Furthermore, in the present 
model Beck’s sensitivity or a least square criterion 
required in most previous works is not employed to 
best match the measurement. Thus, it can be con- 
cluded that the present method is more straight- 
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Table 6. Comparison between estimates and the results using the direct 
problem at t = 0.06 and 0.24 when i = 9, M = 2 and n = 17 

Inverse problem Direct problem 

x t=0.06 t = 0.24 r = 0.06 I = 0.24 

OLMOO 0.25 105 
0.0625 0.20143 
0.1250 0.15848 
0.1875 0.12209 

0.30978 0.25037 0.31127 
0.2695 1 0.20142 0.26951 
0.23522 0.15837 0.23537 
0.20650 0.12171 0.20740 

0.2500 0.09203 0.18273 0.09 149 0.18446 
0.3125 0.06795 0.16317 0.06740 0.16532 
0.3750 0.04936 0.14707 0.04890 0.14933 
0.4375 0.03566 0.13375 0.03532 0.13583 
0.5000 0.02620 0.12264 0.02596 0.12436 
0.5625 
0.6250 
0.6875 
0.7500 

0.01428 0.10396 0.01418 
0.08799 0.00730 
0.07432 0.00353 
0.06289 0.00159 

0.10482 
0.08733 
0.00353 

0.08814 
0.07401 

0.00159 0.06234 
0.05316 
0.04653 
0.04253 
0.04119 

0.8150 0.00067 0.05378 0.00067 
0.8750 0.00026 0.04714 0.00026 
0.9375 0.00010 0.04311 o.ooo1o 
1.0000 0.00006 0.04176 0.00006 

Heat flux at x = 0 
0.84756 0.72629 0.82534 0.73739 

forward than previous works for such problems. It 
can also be found from the present study that the 
present method gives a little effect of the measurement 
location on the estimates. This implies that the present 
model offers a great deal of flexibility. 

The present method is a considerably powerful 
numerical technique for linear one-dimensional heat 
conduction problems. Its mathematical formulation 
is so general that other geometries in addition to the 
planar one illustrated here can also be considered. A 
future paper may extend the present analysis to non- 
linear inverse problems with temperature-dependent 
thermal properties. 
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AU PROBLEME DE CONDUCTION 
THERMIQUE INVERSE 

Rksumh-La mithode hybride, utilisant la mCthode de la transformation de Laplace et la methode des 
&ments finis, est particuli&rement puissante pour rksoudre le probltme linkaire monodimensionnel de la 
conduction. Dans la prisente mtthode, les termes d&pendants du temps sont &cart& en utilisant la mithode 
de Laplace et ensuite la mtthode des ilements finis est appliqu&e au domaine spatial. La temtirature 
transform&e est invers& numeriquement pour obtenir les rksultats dans le domaine rkel physique. L’esti- 
mation des flux et des temgratures de surface, g partir des temtiratures mesur&es B I’inttrieur du solide, 
s’accorde bien avec la solution analytique du problbme direct sans l’analyse de sensibilitt de Beck et le 
cridre des moindres car&. La prksente mtthode peut calculer directement les conditions de surface d’un 
probleme inverse sans le calcul pas g pas dans le domaine jusqu’8 ce que le temps sp&ilique soit atteint. 
De plus, il n’est pas ntiessaire de calculer toutes les temfiratures nodales g chaque pas de temps lorsque 
la mkthode est appliq&e au probltme inverse. On peut prtiiser qu’on constate un effet r&it du lieu de 
mesure sur l’estimation. On estime qu’une telle mtthode est simple et efficace pour traiter de tels problimes. 

ANWENDUNG DER HYBRID-METHODE AUF INVERSE WWRMELEITPROBLEME 

ZusrmmenfassuneDie Hybrid-Methode, welche eine kombinierte Nutzung der Laplace-Transformation 
und der Finite-Elemente-Methode beinhaltet. ist fiir die Liisung eindimensionaler linearer W;irmeleit- 
probleme gut geeignet. Bei der vorgestellten Methode werden die Terme, die die Zeit enthalten, durch An- 
wendung der Laplace-Transformation aus dem Problem entfernt. Danach wird im Raumbereich die 
Finite-Elemente-Methode angewandt. Die numerische Riicktransformation der Temperatur liefert deren 
Werte als physikalische GriiBen. Die Bestimmung von OberflIchenwiirmestrom und -temperatur aus den 
transient gemessenen Temperaturen im Kdrper stimmt ohne Emptindlichkeitsanalyse nach Beck und die 
Methode der kleinsten Fehlerquadrate gut mit der analytischen Liisung des direkten Problems iiberein. Da 
Zeitschritte entfallen, kann die vorgestellte Methode die OberflLhenbedingungen eines inversen Problems 
direkt in der Zeitebene bestimmen. AuDerdem ist es such nicht notwendig. alle Knotentemperaturen jedes 
Zeitschritts zu berechnen, wenn die vorgestellte Methode auf ein inverse;Problem angewandt wird. Es ist 
etihnenswert, daB sich durch den Einflul3 der MeBposition auf das Ergebnis ein kleiner Effekt zeigt. 
Es kann gefolgert werden, daB die vorgestellte Methode auf solche Probleme erfolgreich angewandt werden 

kann. 

llPMMEHEHHE KOMSHHHPOBAHHOI-0 METOm K OljPATHbIM 3AaAYAM 
TEI-IJIOIlPOBO~HOCTM 

AlUlOl’aUlll+~a pemeHHa OAHOMepHblX 38AaY TeILAOllpOBOAHOCTH BeCbMa 3#eKTHBHb(M aBAKeTCR 

MeTOA Ha ocwoae COBMecTHOrO HCnOJIb3OBaHHI npeo6pa30BaHHa JIannaca H MeTOAa KOHeYHblX 3AeMeH- 

TOB. CornacHo nosy MeTony 3aBmiume 0T spehmw cnaraeMble mzIcnmqaioTcn ~3 3anawi npsi 

IlOMOUUl npco6pa30BaHHti nallAaca, a ULTCM I[ npoCTpaHCTBeHHOii O6AaCTH npHMeHacTCJl MeTOIl YOHeY- 

HMX 3nebfelTroB. IQeo6pa30Bainfan Tebineparypa o6paUtaercn wCneHH0 AAK nonyvemfa @H~HYCCKHX 

pe3yJlbTaTOB. OUeHKa TWlJlOBOrO nOTOKa HAH TeMnepa~pbl Ha nOBepXHOCTH n0 H3MepeHHbIM IIepCXOA- 

~bihf TehcnepaTypaM B TB~~AOM Tene xopouro cornacyeTcn c aHa.nHTHqecxHM pemetmeM npnMol3anasH 
6e3 aHaJlH3a 'tyBcTSHTcJlbHOCTH 6CKK H KpKTepHeB HaHMeHbUlHX KlGlApaTOB. B CIIJIY OTCyTCTBHa BP- 

MeHHOrO CKa’tKa AaHHbtii MCTOA nO3BOAaeT HenOCpeACTBeHHO paCC’lHTaTb YCJlOBHl Ha nOBepXHOCTII B 

O6paTHOfi 3aAa’le 6e3 tlOCJleAOBaTMbHO~0 paCWTa BO BpeMeHHO# o6nacrH A0 AOCTHr(eHHR KOHKW- 

Hero MOMeHTa aPMeHH. KpoMe TOrO. npH HCnOJlb30BaHWH AaHHOrO MeTOAa K o6pamoL 3aAaPe OTlla- 

naeT HeO6XOAHMoCrb 0npeAenenwn Bcex -reMnepaTyp B TOSKBX CeTKH Ha KBIKAOM BpeMeHHOM mare. 

CJleAj’tr OTMeTHTb, ‘IT0 npii HCllOAb30BaHHH AaHHOl-0 MeTOAa Bbl6Op MeCTa H3MepeHHii 0183blBacT 

He6WTbUloe BJlHRHHe Ha OUeHKH. TaKHM 06pa3OM, AaHHblii MIFTOA RBJIReTCK npKMblM H MKTHBHbIM 

npH peUleHHH TaKHX 3aAaY. 


