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Abstract—The hybrid method involving the combined use of the Laplace transform method and the finite
element method is considerably powerful for solving one-dimensional linear heat conduction problems. In
the present method, the time-dependent terms are removed from the problem using the Laplace transform
method and then the finite element method is applied to the space domain. The transformed temperature
is inverted numerically to obtain the result in the physical quantity. The estimation of the surface heat
flux or temperature from transient measured temperatures inside the solid agrees well with the analytical
solution of the direct problem without Beck’s sensitivity analysis and a least square criterion. Due to no
time step, the present method can directly calculate the surface conditions of an inverse problem without
step by step computation in the time domain until the specific time is reached. In addition, it is also not
necessary to compute all the nodal temperatures at each time step when the present method is applied to
an inverse problem. It is worth mentioning that a little effect of the measurement location on the estimates
is shown in the present method. Thus, it can be concluded that the present method is straightforward and
efficient for such problems.
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INTRODUCTION

IN RECENT years the analysis of inverse heat con-
duction problems has numerous applications in vari-
ous branches of science and engineering, such as the
prediction of the inner wall temperature of a reactor
and the determination of the heat transfer coefficient
and the outer surface conditions in the re-entry of a
space vehicle. The difficulty in the analysis of inverse
problems is due to the diffusive nature of heat flow.
For this reason, slight inaccuracies in the measured
interior temperatures will be magnified at the surface
and may not be able to predict the surface conditions
with the desired accuracy.

Various methods have been presented for the analy-
sis of such problems. An exact solution of the linear
inverse problem in conduction has been presented by
Burggraf [1] under the condition of the instantaneous
temperature for the given continuous temperature and
heat flux histories at a given internal point. However,
the results obtained by his method are also approxi-
mate for discrete or experimental data. Sparrow et
al. {2] and Woo and Chow (3] applied the Laplace
transform method to the present problem. Their solu-
tions are valid only for small values of time (for large
values of s), thus the application of their method is
limited. The application of the finite element method
to the inverse heat conduction problem has been
investigated by Krutz ef al. [4] and Busby and Truyjillo
[5]. The boundary element method in conjunction
with Beck’s sensitivity analysis has been presented for
the solution of two-dimensional linear inverse heat
conduction problems by Zabaras and Liu [6]. The
finite difference analyses of the inverse problem have
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been introduced by a number of authors [7-9]. Mol-
lification methods have been used by Murio [10, 11}
to smooth the predictions at the surface. Recently,
the method of regularizers was used to analyse some
inverse problems [12-14]. Beck {15-17] used a least
squares method to stabilize the inverse heat con-
duction problem. In all of the above methods, the
complicated computational procedures are generally
required in order to obtain a more accurate solution.
For this reason, the present study presents a simple
and efficient method which can obtain a stable and
accurate solution without step by step computation
in the time domain.

The present study is still limited to a one-dimen-
sional planar geometry with constant thermal prop-
erties. The combined application of the Laplace trans-
form method and the finite element method is applied
to estimate surface conditions from data available at
any location in a planar solid. This hybrid method
has proved to be very powerful for solving linear
transient heat conduction problems [18, 19]. This
method is applied to analyse the present problem,
some different test examples are illustrated. In these
examples, a composite material is also included. It
is found that the present method can improve the
drawbacks of previous works such as the involved
computation. The present technique may be applied
to an inverse problem with temperature-dependent
thermal conductivity. This will be studied in a future
paper.

ANALYSIS

As shown in Fig. 1, one-dimensional linear heat
conduction problems are selected as a basis for the
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NOMENCLATURE

[B] element gradient matrix t dimensionless time
c specific heat of the material v,w free parameters
E total number of elements X coordinate.
{f} global force vector
k thermal conductivity of material Greek symbols
[K] global conduction matrix o thermal diffusivity of material
/ distance between two nodes a,, ratio of thermal diffusivity,
M numbered node of the measurement kipicifk paca

location v ratio of thermal conductivity, k,/k,
n total number of nodes 0 dimensionless temperature
[N“] element shape function matrix il transformed dimensionless temperature
N sensor distance from heated surface {0}  global transformed temperature vector
Q heat generation inside the material 8. transformed dimensionless measured
q(r) surface heat flux temperature
K Laplace transform parameter, r +iw Ji density of material.

application of the present method. The boundary at
x =0 is given as a uniform temperature or an insu-
lated surface. The measured temperature at the
location x = Nis assumed to be known as the function
of time. It is desired to predict the heat flux and the
temperature variation at x = |. The dimensionless
form for such problems may be expressed as

c'o co .

sotQ=7z n0<x<Le>0 (1a)
¢0(0,1)
Frabs 0 orf(0,6)=0 (1b)
oW, 0 = F(1) (Ic)
c0 ,
q(l,1) =+ estimated (1d)
REEL R

0(x,0) =0 (le)

where @ is the volume heat source and (N, ¢) the
measured temperature at the location x = N. The
unknown surface heat flux g(1, ¢) and surface tem-
perature (1, ¢) are to be estimated. In the present
method, ¢(1, ¢) at the specific time r = ¢ is guessed
with Newton’s iteration technique until the measured
temperature O(N, ¢,) is satisfied. Note that the surface
heat flux ¢(1, ¢) and the surface temperature 6(1, ?)
are simultaneously determined without the need for
Beck’s sensitivity analysis and a least square criterion.
To remove the time-dependent terms from the
differential equation and boundary conditions, the

38| =0
x 14=0 " — guessed
38
or
qli,80)s —
swo,n=0f~ — ax Lot

FiG. 1. Geometry of a slab.

method of the Laplace transform will be employed.
Taking the Laplace transform of equations (1) gives

d20

E+Q~=s5 ind<x<gl (2a)
subject to the transformed boundary conditions
dé(0) .
_d}_ =0 or 0(0) =0 (Zb)
0N, s) = F(s) (2¢)
. df
7=3x|._, (2d)

When a function ¢(z) is given, its Laplace transform
is defined as follows:

é(s) = L d(rye"dr. 3)

The solution of equations (2) can be obtained by the
Galerkin weighted residual process. The functional
formulation that is equivalent to equation (2a) and
its boundary conditions, equations (2b)-(2d), can be
written as

1] (dOY | < 5
’=§£ [(a—) “29‘7“‘1’2]""‘5""""
@

Equation (4) can be written as the summation of
individual elements. Assume that the temperature dis-
tribution in every individual element is linear [20].
Thus, the following elemental matrices can be given
as

& = [N){}

(o} = [39]

(5a)

(5b)
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[B] = [afv [ "]. (5)

dx 0x

Equation (4) can be rewritten for each element as

-1 [ errEe o

- [[(o- gstyver o ax

=N} eare (6)
The functional 7 can be expressed as
£
1=y r O]
e=1
where E denotes the total number of elements. The

first derivative of the functional / with respect to {0}
must be equal to zero in order to minimize it, i.e.

“ E Cl'
75* Zag =" @®

The rearrangement of equation (8) gives the following
vector-matrix equation [18, 19]

(K18} = {/} ©

where [K] is an (nxn) band matrix with a complex
number, {#} is an (nx1) vector representing the
unknown temperatures and {f} is an (nx 1) vector
representing the forcing terms.

It can obviously be found from equation (9) that
the double direct Gaussian elimination algorithm and
the numerical inversion of Laplace transforms [21-
23] are applied to equation (9), then the solution
located at a specific node in the given domain will be
obtained. Under the circumstances, the location of the
measured temperature can be considered as a specific
node. It shows that if the guessed heat flux at x = 1
is substituted into equation (9), the calculated tem-
perature at x = N will be determined without com-
puting all the nodal temperatures at each time step.
Note that the estimation of the surface heat flux (or
temperature) at a specific time is found without step
by step computation in the time domain until the
specific time is reached. Obviously, the numerical pro-
cedures of the present method are very different from
those of previous works [4-17] which must compute
all the nodal temperatures at each time step with step
by step computation in the time domain. For this
reason, the present hybrid method seems to be more
efficient for such problems. The guessed heat flux at
x = 1 can be determined by using Newton’s iteration
method when the relative error between the calculated
temperature and the measured temperature at x = N
is less than a small number such as 0.0001. The ex-
pression of the double direct Gaussian elimination
algorithm can be given as
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‘& é'M = | qum (10)
Lgn_ an-

where 8, = g,,.

NUMERICAL EXAMPLES

To test the effectiveness of the present method some
different cases are illustrated.

Example | (one heat point-source)

This example involves one heat point-source 0 = 1
at the central position of a thick undeformable slab.
Its initial temperature is equal to zero and the tem-
peratures at the two ends of this slab are kept constant.
Thus, the response of this system can be expressed as

0<x<1; ZZ€+5(x 05)—2 an

subject to the conditions
000, =6(1,1) =0 (12a)
0(x,0) = (12b)

The exact solution to equations (11) and (12) is given
as

© 1_a-Bi
0x,)=2 % ;2 sin (ﬂ"'> sin (B,) (13)
where §,,=mn,m=1,2,3,...

Assume that the boundary condition at x = 1 must
be estimated, but the temperature at x= N is
measured. It implies that (¥, ?) is given as

6N, =2 ﬁ_,,

sin (ﬁ "') sin (B,.N). (14)
Under the circumstances, the system belongs to an
inverse problem.

The Laplace transform of equation (11) with
respect to time is

did 1

TS 5(x 0.5) = s0. 15

The resulting system of algebraic equations is given
in the following matrix form when the finite element
method is applied to Example 1
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Table 1. Solutions for various measurement locations and nodes when ¢ = 0.6

n=9 n=17
X M=2 M=17 M=2 M=15 Exact
0.125 0.06231 0.06041 0.06237 0.05983 0.06230
0.250 0.12501 0.12119 0.12514 0.12001 0.12461
0.375 0.18850 0.18269 0.18870 0.1809! 0.18701
0.500 0.25312 0.24524 0.25338 0.24283 0.24878
0.625 0.19418 0.18413 0.19454 0.18106 0.18701
0.750 0.13695 0.12459 0.13738 0.12082 0.12461
0.875 0.08159 0.06680 0.08212 0.06229 0.06230
1.000 0.02824 0.01086 0.02887 0.00557 0.00000
Heat flux at x = |
—0.41863 —0.43994 —-0.41779 ~0.44636 —0.49813

n, total number of nodes ; M, numbered node of the measurement location.

[4,]

N

F
-
| E—

S vl -

df

—dx"" -

where 4 = 2(1//+s//3) and B = — 1/l +5l/6.

The surface heat flux (or temperature) is deter-
mined by using the hybrid method. Their calculated
solutions are shown in Tables 1 and 2.

(16)

Example 2 (heat flux and insulation at two ends)

Consider a thick undeformable slab which is
required to be heated by a surface heat flux g(s) at
x = 1. The surface at x = 0 is assumed to be insulated.
Similarly, assume that its initial temperature is also
zero. Using the ‘data’ generated in this manner,
the surface heat flux ¢(r) is reconstructed using the
inverse technique. The response of this system is
governed by

30 &
s = X<
sa=a. 0<X<I (17)

with the conditions

é0
500 =0 (18a)
0
=(Ly=qn=1 (18b)
0(x,0) = 0. (18¢)

The exact solution of Example 2 is given as [24]

Table 2. Comparison of estimates with the exact solution at ¢+ =1 and 5 when
n=%and M =7
t=1 t=S5
X Estimate Exact Estimate Exact
0.125 0.06186 0.06250 0.06248 0.06250
0.250 0.12383 0.12499 0.12496 0.12499
0.375 0.18603 0.18750 0.18745 0.18751
0.500 0.24856 0.24931 0.24993 0.24932
0.625 0.18652 0.18750 0.18741 0.18751
0.750 0.12496 0.12499 0.12490 0.12499
0.875 0.06396 0.06250 0.06238 0.06250
1.000 0.00354 0.00000 —0.00014 0.00000

Heat flux at x = 1

—0.48099

—0.49981

-0.50014 —0.49984
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Table 3. Solutions for various measurement locations and nodes when ¢ = 0.6

n=9 n=17
x M=2 M=17 M=2 M=15 Exact
0.000 0.43378 0.43322 0.43387 0.43370 0.43388
0.125 0.44157 0.44101 0.44166 0.44146 0.44165
0.250 0.46496 0.46437 0.46498 0.46479 0.46497
0.375 0.50398 0.50332 0.50390 0.50371 0.50385
0.500 0.55862 0.55790 0.55842 0.55821 0.55833
0.625 0.62894 0.62813 0.62857 0.62834 0.62844
0.750 0.71496 0.71404 0.71441 0.71416 0.71420
0.875 0.81669 0.81565 0.81592 0.81563 0.81564
1.000 0.93419 0.93299 0.93315 0.93282 0.93279
Heat fluxatx =1
1.00286 1.00157 1.00074 1.00036 1.00000

2

-1 »

3x .05 (B,.x) s

B

0(x,) =1+
19

where §,,=mn,m=1,2,3,...

To attempt to predict the surface conditions at
x = 1 the temperature variation at the measurement
location x = N must be known such as Example 1.
The present hybrid method is still applied to this test
case. The calculated solutions are shown in Tables 3
and 4.

The calculated temperature distributions at various
measurement locations for various nodes are listed in
Tables 1 and 3, respectively. It is found from these
two tables that the solutions of the 17 modelling nodes
are in good agreement with those of the 9 modelling
nodes. It implies that the present solutions are con-
vergent. Tables 1 and 3 also show good agreement
between the present solutions and the exact values
even though the 9 modelling nodes are selected. Thus
this modelling is used to evaluate the results under
other conditions. It can be seen from Tables 1 and 3
that the changes of the measurement location have a
little effect on the numerical solutions. Tables 2 and 4
show a comparison of the present solutions with the
exact solutions when ¢ = 1 and 5. Similarly, the good

agreements are also observed in this comparison when
the 9 modelling nodes are required. It is worth noting
that the present solutions also agree well with the
analytical solutions for the long-time cases. It can be
concluded from these above facts that the present
method is a powerful numerical technique for inverse
heat conduction problems under more general con-
ditions.

Example 3 (composite materials with two layers)

A composite slab of two layers with the assump-
tions of constant thermal properties and neglect of
contact resistance is analysed. The dimensionless
equations for the composite slab of two layers may be
expressed as

a9, 0,
0<x<05; F7=—2- (20a)

0%, 0
05<x<1; “"5?21312' (20b)

The boundary and initial conditions are given as
follows:

Table 4. Comparison of estimates with the exact solution at 1 = | and 5§ when

n=%and M =2
t=1 t=5
X Estimate Exact Estimate Exact
0.000 0.83329 0.83334 4.83324 4.83333
0.125 0.84113 0.84116 484131 4.84115
0.250 0.86459 0.86459 4.86459 4.86458
0.375 0.90371 0.90365 4.90375 4.90365
0.500 0.95847 0.95833 4.95845 4.95833
0.625 1.02889 1.02864 5.02893 5.02865
0.750 1.11496 1.11458 5.11481 5.11458
0.875 1.21667 1.21614 5.21646 5.21615
1.000 1.33401 1.33332 5.33344 5.33333
Heat fluxatx =1
1.00151 1.00000 1.00028 1.00000
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t>0x=0; - 6;01‘%2 = ¢(t) = |cos 107 (21a)
_ 08, 00,

x-0.5, Kx——}’a—, 0, —-92 (ZIb)
00,

x=1; Fx__o 2lc)

0,(x,0) = 0,(x,0) (21d)
where
2y = fa, =k,pie ki pic,
y=ky/k,(pc, =pic; =Lk, =1k, =0.5).

Few papers have been published on heat transfer in
the inverse problem of composite slabs [25]. Indeed,
analytical results of heat transfer in such problems are
often useful for many practical designs. Example 3 is
applied to test the efficiency of the present method for
the inverse heat conduction problem in the composite
slab of two layers. In this test case the heat flux and
temperature are assumed unknown at the location
x = 1. Similarly, it is necessary to know the tem-
perature variation at the measurement location
x = N. The final vector-matrix equation to equations
(20) and (21) using the Laplace transform method
and the finite element method is given as

4, B,
B, 24, B,
B, A +A4, B,
— BZ'AZ_
Ry ]
7 [46)
0
g
=10 (22)
g, 0
- gn.J = 0 =

where ‘i” and ‘M’ are numbered as the position of
the interface and the location of the measurement,
respectively. The values of 4,, B,, 4, and B, are given
as

4 __l_ sl B = 1 s/
i =j+3. Bi=—7+%

oy sl oy sl
Ar=—+73, Bz——“l—'f'g- (23)

Similar numerical procedures, as shown in Example
I, are used to analyse equation (22). The unknown

Table 5. Solutions for various measurement locations at
t=0.1lwheni=9and n=17

Inverse problem

Direct

x M=2 M=12 problem
0.0000 0.26406 0.26176 0.26432
0.0625 0.23509 0.23385 0.23508
0.1250 0.20584 0.20506 0.20527
0.1875 0.17720 0.17617 0.17637
0.2500 0.15024 0.14917 0.14945
0.3125 0.12588 0.12486 0.12526
0.3750 0.10468 0.10367 0.10422
0.4375 0.08689 0.08589 0.08655
0.5000 0.07254 0.07154 0.07226
0.5625 0.05035 0.05005 0.05017
0.6250 0.03388 0.03318 0.03376
0.6875 0.02210 0.02203 0.02203
0.7500 0.01401 0.01336 0.01397
0.8150 0.00871 0.00861 0.00868
0.8750 0.00544 0.00543 0.00543
0.9375 0.00370 0.00368 0.00369
1.0000 0.00315 0.00313 0.00314

Heat flux at x =0

0.45851 0.43799 0.45360

surface heat flux ¢(¢) at a specific time is guessed and
then checked whether the calculated temperature at
the location x = N matches the measured temperature
using Newton’s iteration technique. The numerical
results are shown in Tables 5 and 6.

Table 5 shows solutions for the two different
locations at r =0.11 when i=9 and n = 17. It is seen
from Table 5 that no remarkable differences are
observed in the comparisons for the two different
measurement locations. It can be similarly concluded
that the effect of the measurement location on the
estimates is negligible. In addition, Tables 5 and 6 also
show a fairly good agreement between the numerical
solutions of the direct problem and the estimates.

CONCLUSIONS

An accurate and stable method of analysis is
developed for solving one-dimensional linear inverse
heat conduction problems including the composite
slab of two layers. Due to no time step, the present
method can directly predict the surface heat flux (or
temperature) at a specific time from the transient mea-
sured temperature inside solids without step by step
computation in the time domain until the specific time
is reached. In other words, the solution to an inverse
problem can be uniquely determined when the data
at the interior location are known at a specific time.
It is not necessary to compute all nodal temperatures
at each time step when the present method is applied
to the inverse problems. Furthermore, in the present
model Beck’s sensitivity or a least square criterion
required in most previous works is not employed to
best match the measurement. Thus, it can be con-
cluded that the present method is more straight-
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Table 6. Comparison between estimates and the results using the direct
problem at t = 0.06 and 0.24 wheni=9, M =2andn =17

Inverse problem Direct problem
x t=0.06 t=024 t=0.06 t=024
0.0000 0.25105 0.30978 0.25037 0.31127
0.0625 0.20143 0.26951 0.20142 0.26951
0.1250 0.15848 0.23522 0.15837 0.23537
0.1875 0.12209 0.20650 0.12171 0.20740
0.2500 0.09203 0.18273 0.09149 0.18440
0.3125 0.06795 0.16317 0.06740 0.16532
0.3750 0.04936 0.14707 0.04890 0.14933
0.4375 0.03566 0.13375 0.03532 0.13583
0.5000 0.02620 0.12264 0.02596 0.12436
0.5625 0.01428 0.10396 0.01418 0.10482
0.6250 0.00733 0.08799 0.00730 0.08814
0.6875 0.00353 0.07432 0.00353 0.07401
0.7500 0.00159 0.06289 0.00159 0.06234
0.8150 0.00067 0.05378 0.00067 0.05316
0.8750 0.00026 0.04714 0.00026 0.04653
0.9375 0.00010 0.04311 0.00010 0.04253
1.0000 0.00006 0.04176 0.00006 0.04119
Heat fluxat x =0

0.84756 0.72629 0.82534 0.73739

forward than previous works for such problems. It
can also be found from the present study that the
present method gives a little effect of the measurement
location on the estimates. This implies that the present
mode! offers a great deal of flexibility.

The present method is a considerably powerful
numerical technique for linear one-dimensional heat
conduction problems. Its mathematical formulation
is so general that other geometries in addition to the
planar one illustrated here can also be considered. A
future paper may extend the present analysis to non-
linear inverse problems with temperature-dependent
thermal properties.
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APPLICATION DE LA METHODE HYBRIDE AU PROBLEME DE CONDUCTION
THERMIQUE INVERSE

Résumé—La méthode hybride, utilisant la méthode de la transformation de Laplace et la méthode des
éléments finis, est particuliérement puissante pour résoudre le probléme linéaire monodimensionnel de la
conduction. Dans la présente méthode, les termes dépendants du temps sont écartés en utilisant la méthode
de Laplace et ensuite la méthode des éléments finis est appliquée au domaine spatial. La température
transformée est inversée numériquement pour obtenir les résultats dans le domaine réel physique. L’esti-
mation des flux et des températures de surface, 4 partir des températures mesurées a I'intérieur du solide,
s’accorde bien avec la solution analytique du probléme direct sans I'analyse de sensibilité de Beck et le
critére des moindres carrés. La présente méthode peut calculer directement les conditions de surface d’un
probléme inverse sans le calcul pas 4 pas dans le domaine jusqu'a ce que le temps spécifique soit atteint.
De plus, il n’est pas nécessaire de calculer toutes les températures nodales a chaque pas de temps lorsque
la méthode est appliquée au probléme inverse. On peut préciser qu'on constate un effet réduit du lieu dé
mesure sur I'estimation. On estime qu’une telle méthode est simple et efficace pour traiter de tels problémes.

ANWENDUNG DER HYBRID-METHODE AUF INVERSE WARMELEITPROBLEME

Zusammenfassung—Die Hybrid-Methode, welche eine kombinierte Nutzung der Laplace-Transformation
und der Finite-Elemente-Methode beinhaltet, ist fiir die Losung eindimensionaler linearer Wirmeleit-
probleme gut geeignet. Bei der vorgestellten Methode werden die Terme, die die Zeit enthalten, durch An-
wendung der Laplace-Transformation aus dem Problem entfernt. Danach wird im Raumbereich die
Finite-Elemente-Methode angewandt. Die numerische Riicktransformation der Temperatur liefert deren
Werte als physikalische GréBen. Die Bestimmung von Oberflichenwérmestrom und -temperatur aus den
transient gemessenen Temperaturen im Korper stimmt ohne Empfindlichkeitsanalyse nach Beck und die
Methode der kleinsten Fehlerquadrate gut mit der analytischen Losung des direkten Problems {iberein. Da
Zeitschritte entfallen, kann die vorgestellte Methode die Oberflichenbedingungen eines inversen Problems
direkt in der Zeitebene bestimmen. AuBerdem ist es auch nicht notwendig, alle Knotentemperaturen jedes
Zeitschritts zu berechnen, wenn die vorgestellte Methode auf ein inverses Problem angewandt wird. Es ist
erwdhnenswert, daB sich durch den EinfluB der MeBposition auf das Ergebnis ein kleiner Effekt zeigt.
Es kann gefolgert werden, daB die vorgestellte Methode auf soiche Probleme erfolgreich angewandt werden

kann.

NPUMEHEHHE KOMBUHHNPOBAHHOI'O METOJIA K OBPATHbLIM 3AJAYAM
TETINOMNMPOBOAHOCTH

AusoTauns—/In8 pelieHHS OQHOMCPHBIX 33afa¥ TEIUIONPOBOLHOCTH BecbMa IPMEKTHBHHIM SBIACTCH
MCTOZ Ha& OCHOBE COBMECTHOTO HCTIONB30BaHHA npeobpalosanua Jlanaca H METORA KOHEYHBIX AEMEH-
ToB. COTrNacHO 3TOMY METOOy 3aBHCAUIMC OT BPCMCHH CJaraeMpic HCKJIIOYAIOTCA M3 3adadH NpH
nomotun npeobpazosannii Jlansaca, a 3aTeM K NPOCTPAHCTBCHHOH 061aCTH NPHMEHACTCS METON KOHEY-
Hux saemenToB. [IpeobpasosaHHas TemnepaTypa oGpallacTCa YHCICHHO LR TMOAYYCHHR (uIHecKux
pe3ybTaToB. OLUEHKa TEILIOBOrO MMOTOKa HIH TEMNEPAaTYPhl HA NOBEPXHOCTH NO HIMEPCHHBIM nepexoa-
HBIM TCMIEPATYPaM B TBEPAOM TC/C XOPOUIO COrnacyeTcs C aHAJMTHYCCKHM PeILicHHEM NPAMol 3anaun
6e3 aHanM3a YyBCTBHTE/IBHOCTH Bexa M KpMTepHeB HaMMEHBUIHX KBAaApaTos. B cuny oTcyTcTsus Bpe-
MEHHOTO CKauka JaHHLI# METOA NMO3BONACT HEMOCPEACTBEHHO PACCUHTATDH YC/IOBHS HAa MOBEPXHOCTH B
ofpaTHoil 3anaue 6e3 NOCNENOBATEALHOIO PacueTa BO BPEMCHHON! OGMacTH IO QOCTHKCHHA KOHKpET-
HOro MOMeHTa BpemenH. KpoMme Toro, npH Hcnonb3oBaHHH NAHHOTO MeToaa k obpaTHoO# 3anave otna-
naer HeoGXOAMMOCTL ONMpElEICHHA BCEX TEMMEpaTyp B TOYKaX CETKH HAa KaXIOM BPEMCHHOM Ilare.
Cneayer OTMETHTL, YTO NPH HCNONL3OBAHHH ONAHHOrOo Merona BWOOp MecTa H3Mepenuli oxasmiBaeT
HebGonbuloe BAHAHHE HA OucHKH. TakkM 06pa3oM, HaHHBI METOA ABASCTCA NPAMLIM H 3PDEKTHBHBIM
NpK PeLICHHU TakHX 3aaay.



